If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=F+F^2-132
We move all terms to the left:
(F)-(F+F^2-132)=0
We get rid of parentheses
-F^2-F+F+132=0
We add all the numbers together, and all the variables
-1F^2+132=0
a = -1; b = 0; c = +132;
Δ = b2-4ac
Δ = 02-4·(-1)·132
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{33}}{2*-1}=\frac{0-4\sqrt{33}}{-2} =-\frac{4\sqrt{33}}{-2} =-\frac{2\sqrt{33}}{-1} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{33}}{2*-1}=\frac{0+4\sqrt{33}}{-2} =\frac{4\sqrt{33}}{-2} =\frac{2\sqrt{33}}{-1} $
| 4u=-64 | | -3(1-3n)=-12n(n-5) | | 0.29x+10=0.35x+3 | | 17=4w-15 | | 9–5k=12–(6k+7) | | 2u+14=50 | | -6(m+8)=4(17-m) | | 6(2x+4)^2=(2x+4)+2 | | x/9+42/9=3 | | 2(3p+5)=12 | | 10^y=2 | | -4(2x-5)-(x-17)=1/6(42x-56)-1/3(36x-48) | | 5(x+2)=-3(3-4x) | | 200-15x=100+10x | | 9d+6d+5=5d-2 | | -5p-5=2(-8p-2)-2(4-6p) | | 2x=(81-x) | | n+2=n+4 | | 4b-3-7b=18 | | 22+a=37+6 | | 2(3t-4)-6t=-4 | | 7h-14=22-2h | | 3/x+5=15 | | 3=h4 | | 12=-3p-8+4p | | -x/6=17 | | 8c+10-3c=10c-5 | | x/5.9-7=7 | | 19b-1=-20 | | v+4=12 | | (X+7)/3-(2x/3)=30 | | 4(1-1x)+3x=-2x-2 |